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Abstract 

In the analysis of data obtained by polarized neutron 
scattering, corrections for extinction are of vital 
interest. It is demonstrated that, in some materials like 
metal alloys, secondary extinction in samples obtained 
from ingots by standard methods is very unlikely to be 
described by a simple mosaic model. It is shown that 
cold working of the samples improves the sample 
properties in this respect. Examples of such treatment 
are given and a method is described to analyse R-on- 
rocking-curve data in order to obtain data corrected for 
secondary extinction. 

1. Introduction 

For the determination of the magnetic-moment density 
on an atomic scale in magnetic materials, the diffrac- 
tion of polarized neutrons by magnetized samples is a 
well-known tool. This method utilizes the coherence 
that can occur between nuclear and magnetic scattering 
in Bragg peaks when certain experimental conditions 
are fulfilled. One of these conditions is that the neutrons 
in the incident beam all have the same spin state, 
parallel or anti-parallel to the magnetization direction 
of the sample. During the experiment, diffracted 
intensities are collecting for both incoming spin states 
of neutron polarization. From the ratio of these 
intensities, the flipping ratio R, it is in principle possible 
to calculate the magnetic scattering length of the atoms 
in the sample, provided that their nuclear scattering 
length is known. More details of the method are given 

• in Nathans, Shull, Shirane & Andresen (1959). 
With the polarized neutron beams that are available 

nowadays it is often possible to obtain flipping ratios 
with a statistical accuracy of 1 in 104. Thus, the real 
accuracy of the final result depends on the precision of 

• 0567-7394/79/030468-08501.00 

the corrections for various effects that have to be 
applied to the raw data. One of these effects is the 
presence of secondary extinction. A method that can be 
used for the detection of occurrence of secondary 
extinction is the R-on-rocking-curve method. This 
method utilizes the fact that the magnitude of the 
scattering power of a given crystal, and hence the 
degree of extinction, is changed by reversing the 
direction of the incident neutron polarization without 
altering the sample. By recording the flipping ratio R 
as the crystal is rotated through the Bragg peak, an 
indication of the presence of secondary extinction may 
be obtained in those cases where the width of the 
rocking curve is mainly governed by the orientation 
spread in the crystal and not by the divergence of the 
primary beam. When this condition is fulfilled, one may 
expect that in the Bragg peak, where the scattering is 
maximum, the extinction effects are most pronounced. 
As the crystal is rotated off the peak, fewer volumes in 
the crystal will be in reflecting position and R will be 
less affected by extinction. 

From these considerations one expects the following 
behaviour for R in the absence of any scattering other 
than Bragg scattering for an ideally imperfect crystal, 
i.e. a crystal consisting of perfect mosaic blocks which 
have some regular orientational spread. 

At the maximum of the symmetric rocking curve, R 
is minimum. When the crystal is rotated off the 
maximum in either direction R increases and 
approaches the limit of extinction-free R. This 
behaviour is visualized in Fig. 1. The magnitude of the 
dip in R depends on various properties of the crystal, 
such as scattering cross-section, thickness, mosaic 
spread, but qualitatively the picture should be general. 

A method as described above has been used by 
Nathans, Shull, Shirane & Andresen (1959)for investi- 
gating samples of Fe of various thicknesses in the 
presence of secondary extinction. These authors found 

© 1979 International Union of Crystallography 



B. VAN LAAR, F. MANIAWSKI AND S. KAPRZYK 469 

that the rocking curve of the 110 reflection of an Fe 
sample with a thickness of 1.25 mm shows a behaviour 
as presented in Fig. 1. The observed R at the maximum 
of the Bragg peak was about 2.2 whereas a value of 3.7 
was found when the crystal was rotated sufficiently far 
from this maximum. In a similar experiment, performed 
on a thinner sample (0.41 mm), they observed a 
constant value (3-7) for R over the whole angular 
range. From this it was concluded that the thinner 
sample was already free of secondary extinction. 

Another example is given (Lander & Brun, 1973; 
Brun & Lander, 1974) in a study of the magnetic form 
factor of Tb in Tb(OH)3. In this investigation it was 
concluded that the flipping ratio was independent of the 
intensity and that the extinction is primary or secon- 
dary, of type II. Unfortunately, the data presented in 
Brun & Lander (1973) are not accurate enough to 
justify these conclusions. 

The importance of the extinction effect in polarized 
neutron diffraction has been demonstrated by Bonnet, 
Delapalme, Becker & Fuess (1976). These authors 
demonstrated that in yttrium iron garnet (YIG), 
extinction could be described by an analytical model in 
which some parameters have to be fitted. However, the 
conditions met in YIG may not be true in non-ionic 
samples like metals or alloys, for which it is known that 
the history of growth, slicing, and mechanical shaping 
has an effect, very often strongly anisotropic, on the 
microproperties that are fundamental for extinction. 

To our knowledge, no study has been reported in 
which the quantitative behaviour of the flipping ratio R- 
on-rocking-curve has been used to infer a quantitative 
value for the amount of secondary extinction and to 
deduce a value for R, corrected for this phenomena. 
Since in polarized neutron experiments, extinction 
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Fig. 1. Expected rocking curve (solid line) and flipping ratio R 
(broken line) in the case of an ideally imperfect crystal. 

corrections are most troublesome, it seemed worth 
while to investigate the possibility of the deduction of 
information about extinction from the R-on-rocking- 
curve in more detail. Experiments were performed on 
samples of Ni-rich Ni--V alloys. Results of this investi- 
gation are reported in this paper. 

2. General 

The idea of deducing more quantitative information 
about extinction from the behaviour of the flipping ratio 
on various points of the rocking curve implies already 
the assumption that the amount of extinction is directly 
related to the intensity scattered by the sample. At 
various points of the rocking curve the scattering by the 
sample is different (related to its mosaic distribution) 
and therefore the amount of extinction varies. In order 
to deduce from the data a value for the flipping ratio, 
corrected for extinction, it is necessary to describe the 
quantitative relation between scattered intensity and 
amount of extinction. 

In this phenomenological approach, it is not yet 
necessary to use any particular model for the extinction 
process itself. It is only required that there should exist 
a one-to-one correspondence between scattered inten- 
sity and the amount of extinction. The extinction-free 
value for R then should follow from extrapolation of the 
observed intensities to zero. 

In the following it is assumed that the observed 
scattered intensity from the crystal at a misset angle e is 
composed of an intensity 1B(t ) because of Bragg 
scattering and a non-Bragg background IN(e). The 
observable flipping ratio is then 

with 

then 

R(8) = RB(e) 

where 

/+ ( t )  + I+(8) 
R ( t )  = I ~ ( e )  + I~( t )  ' (1) 

i+(e)  
R n ( t ) = i ~ ( e  ) (2a) 

1+(8) 
RN(e)  - I~(t )  ' (2b) 

z+(t) 

I+(e,) + I~v(e)[Rn(e.)/RN(e ) -- 1] '  

I+(e) = I+(t) + I+(8). 
With the definitions 

(3) 

I~+(,) 
fl(,) - I+(O)' (4b) 

I+(e) 
p(e) = I+(0----)' (4a) 
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one obtains 

p(0 
a ( 0  . (5) 

p(F,) + #(F,)tRB(F,)/RN(F,)-- 11 

Equation (5) describes the behaviour of the flipping 
ratio R(8) when a crystal is rocked around its Bragg 
position in terms of Re(e), the flipping ratio for Bragg 
scattering which is still affected by extinction, RN(e ) 
which describes the polarization dependence of the 
background, and the two parameters p(e) and fl(8) 
which describe the angular dependence of total and 
background scattering respectively. 

Now, the simpler case is considered in which the 
non-Bragg background is non-polarized and much less 
dependent on e than the Bragg scattering. In most 
experimental studies of Bragg scattering this condition 
will be met. 

Then 

and 

~(8) = ~, RN( 0 = 1,  

p(~) 
R(e) = Rn(e ) . ( 6 )  

p ( e )  + f l [ R B ( e  ) - -  1] 

When no extinction is present, R,(e) is constant and 
equal to R. The presence of extinction will cause a 
deviation of R B (e) from R, 

RB(e ) = R W[I+(e)]. (7) 

If a mathematical form of ~Y were known, (6) could 
be used for obtaining the desired value for R from a fit 
to the observed R (e) values. 

At this point, we remark that deducing a general 
analytical expression for Rn(e) for a non-ideal crystal 
will be difficult, if not impossible, because properties 
that are responsible for extinction in a crystal may 
generally not be analytically descriptive and in addition, 
they may vary in an unpredictable way from sample to 
sample. Some further considerations concerning the 
form of 7' are given in the Appendix. 

3. Experimental 

The polarized neutron beam diffractometer COPOL, 
on which all measurements were performed was 
installed at the HFR reactor at Petten, The Nether- 
lands. This diffractometer has been made operational in 
collaboration with the Institute of Nuclear Physics, IF J, 
Krak6w, Poland. The polarization of the mono- 
chromatic beam is > 99%, the wavelength is 1.08 /~, 
and the flipping efficiencies of the two spin flippers are 
>99 .9%.  

Ingots of Nil_xV x (x = 0.017 and 0.053) were 
grown by the Bridgeman method. Oriented ingots were 
sliced with a mechanical wire saw using abrasive 

powder of grade 600. The same grade powder was used 
for smoothing the surfaces of the slices on a flat table. 
Final finishing was by electropolishing (~0-050 mm 
deep) at room temperature. The thinnest samples were 
obtained by one-side electropolishing of 0.20 mm thick 
samples glued to an aluminium backing with a resin 
cement. All samples were plane-parallel discs with a 
diameter of 24 mm. 

For the measurements shown in Figs. 2 and 3, 
samples of thickness 0.190 mm and 0.065 mm, respec- 
tively, were used. The sample used for the measure- 
ments of Figs. 4 and 5 had a thickness of ~0.005 mm. 

° 
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Fig. 2. Observed rocking curve (full line) and R factor, R (~) (open 

circles); 02:2 in symmetric reflection, sample Nio.947V0.0s  3, t = 
0.190 mm. 

z 

o -  
-1 

Fig. 3. Observed rocking curve and R factor; i i l  in symmetric 
transmission, sample Ni0.947V0.053, t = 0.065 mm. 



B. V A N  LAAR,  F. M A N I A W S K I  A N D  S. K A P R Z Y K  471 

Some samples prepared in the above way were given 
further treatment consisting of subsequent cold-work, 
annealing, smoothing and electropolishing. 

Thus sample 1 used for Fig. 6 was bent 1500 times 
on a cylinder of  radius 70 mm, when having a thick- 
ness of  0 .440  mm. Care was taken that each bend was 
carried out along a different direction. After this, 
thinning on a fiat table was done, following by electro- 
polishing to reach the final thickness of 0 .150  mm. 

Sample 2A, for Figs. 7 and 8, was bent 1500 times 
on a cylinder of  radius 15 mm and annealed for two 
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Fig. 4. Observed rocking curve and R factor; 111 in trans- 
mission, sample Nio.gaaV0.o~7, t = 0.005 mm. 
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Fig. 5. Observed rocking curve and R factor; 020 in symmetric 
transmission, sample Nio.gs3Vo.olT, t = 0 .005 mm. 

hours at 973 K. No  further finishing was applied. Its 
thickness was 0 .10  mm. 

Sample 3, for Figs. 9 and 10 was treated similarly to 
sample 1 except that the bending was performed on a 
cylinder of  radius 25 mm and, after bending, annealing 
was carried out for 22 h at 873 K. 

it T'T 

° ~  

Ulssrr(DEGarm) 
Fig. 6. Observed rocking curve and R factor; 200 in symmetric 

transmission, sample 1, Nio.ga3Vo.olT, t = 0 .150  mm, cold- 
worked. 

u I s s m ~  

Fig. 7. Observed rocking curve and R factor 1 i i in symmetric 
transmission, sample 2A, Ni0.983Vo.017, t = 0 .10  mm, cold- 
worked. The dashed line is the result of the least-squares fit, 
described in the text. 

Fig. 8. Observed rocking curve and R factor; 200 in symmetric 
transmission, sample 2A, Nio.9saV0.ol7, t = 0 .10 mm, cold- 
worked. 
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4. Rocking curves of non-cold-worked samples 

In Figs. 2-5 the rocking curves and the corresponding 
flipping ratios are given for different reflections for two 
compositions of the alloy and variable thickness of the 
samples. The samples were prepared (as described in 
the next part of this paper) directly from the ingots 
avoiding as far as possible any damage of the ingot's 
microstructure. 

From the presented data it is clear that no simple 
isotropic model, e.g. that described by Zachariasen 
(1967), can be used to describe the strongly irregular 
behaviour of R(e). Even for an extremely thin sample 
(thickness 0.005 mm), extinction was noticeable. The 
observed irregularities must be ascribed to features of 
the individual samples cut from an ingot and are 
connected to both the growth history of the ingot and 
to the mechanical treatment each sample has received. 
The common feature of the curves is a general lack of 
the desired one-to-one correspondence between obser- 
ved intensity and observed R-factor. This is a very 
striking feature because all possible extinction models 
will have one thing in common; the same amount of 
scattered intensity has to be related to the same amount 
of extinction. Therefore, it is impossible a priori to 
explain the observations presented in Figs. 2-5, on the 
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Fig. 9. Observed rocking curve and R factor; 151 in trans- 

mission, sample 3, Ni0.983V0.017, t = 0.143 mm, cold-worked. 
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Fig. 10. Observed rocking curve and R factor; 200 in symmetric 
t ransmission,  sample 3, Ni0.gs3V0.017, t = 0.143 ram, cold- 

worked. 

basis of some extinction model and no attempt can be 
made to deduce an extinction-free value for the flipping 
ratios. At this point the question may be raised whether 
any other method used for quantitative estimation of 
extinction-free R values, like for instance measure- 
ments of the wavelength dependence of R(0), the peak 
value of R(e), and subsequent extrapolation to zero 
wavelength would be successful when dealing with the 
present samples. It seems reasonable to answer this 
question negatively. 

Because of these considerations, we have tried not 
only to decrease the amount of extinction in these 
materials, but to homogenize the material in such a way 
that the accidental structure of the observed curves 
would change qualitatively into that indicated in Fig. 1. 
This goal seems to be achieved by subsequent cold- 
working of the samples, followed by annealing on the 
grounds that a more uniform dislocation pattern would 
cause a more homogeneous mosaic distribution, thus 
resulting in a more regular shape of the R-on-rocking- 
c u r v e .  

5. Rocking curves of cold-worked samples 

In Figs. 6-10 R-on-rocking-curve data from the 
cold-worked samples are given. Fig. 6 clearly shows an 
improvement compared with the non-cold-worked 
samples (Figs. 2-5). This improvement refers to both 
diminution of the amount of extinction and an 
improved regularity of the R-on-rocking-curve. How- 
ever, this improvement is not yet satisfactory because 
the curve in Fig. 6 is not regular enough to be treated 
analytically. 

The curves in Figs. 7-10 show a further improve- 
ment which we consider satisfactory enough to enable a 
reliable analysis to be performed. 

Thus, it seems to be possible to deduce an extinction- 
free R value from the rocking-curve data of a sample 
that has received a treatment that influenced its micro- 
structural properties to such an extent that a one-to-one 
correspondence between flipping ratio and intensity has 
been restored. 

The results of measurements on the two strongest 
reflections of samples 2A and 3 are given in Table 1. 
For each reflection the following quantities are given: 
sample number as described previously; a and a ' ,  the 
angles between the normal to the sample surface and 
the direction of the incident and diffracted beam, 
respectively (Fig. 11); the effective neutron beam path l 

Fig. 11. Definition of the angles a and ~' that describe the geometry 
of  incident and diffracted neutron beam with respect to the 
surface of  the samples. 
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within the sample, defined as l = ½d(1/cos a +  1/cos a') 
where d is the crystal thickness; and the peak value 
R(0) of the flipping ratio. The numbers in the last two 
columns, the extinction-free value R for the flipping 
ratio and the quantity [R - Rn(O)]/R, are obtained by 
the extrapolation procedure described in the next 
paragraph. 

and G is a fitting parameter related to the extinction 
effect in the particular reflection. 

Equations (8) and (9) express that the effect of 
extinction on Rn(e ) decreases linearly with decreasing 
intensity difference AI(8) and that there is no more 
extinction when AI(e) reaches zero. 

Inserting (8) into (6) we obtain 

6. Extrapolation procedure 

In order to deduce extinction-free values for R from the 
data, an extinction correction for Bragg scattering has 
to be incorporated into (6). This means that the 
observed R factor for Bragg scattering Rn(e) has to be 
expressed in terms of the extinction-free value R and 
some parameter(s) describing its dependence on the 
amount of diffracted intensity. 

At this stage, it is in principle possible to introduce 
any, more or less sophisticated, model that describes 
the extinction phenomenon. The model that is used in 
the present paper is the simplest model that can be 
fitted satisfactorily to the experimental data. 

We found, as will be shown below, that a very simple 
linear expression for the extinction behaviour can be 
fitted to the observed data. That means that the 
treatment of the samples described in the previous part 
of this paper reduced the amount of extinction in the 
present samples to such an extent that this linear 
approximation appears to be sufficient. 

In this linear approximation we may assume that the 
amount of extinction is a linear function of scattered 
intensity. In this case we may write the observed 
flipping ratio Rn(e) as a function of the extinction-free 
R: 

1 - G I + ( e )  
Rn(e) = R ~ R [ 1  - GAI(e)I, (8) 

1 --  G I ; ( e )  

where 

AI(e) = I+(e) -- I;(e) = I+(e) -- I-(e) (9) 

p(e)[1 -- GAI(e)] 
R ( ~ ) = R  . (10)  

p(8) + fl{R[1 - G A I ( e ) ] -  1} 

Equation (10) describes the variation of the observed 
flipping ratio R(e) when the crystal is rotated through 
the Bragg position (misset angle e) when the former 
assumptions are valid. These assumptions are: 

(i) amount of non-Bragg background is constant 
under the Bragg peak, 

(ii) non-Bragg background is unpolarized (R N = 1), 
(iii) condition (8) is valid. This condition is discussed 

in the Appendix. 
Expression (10) was used to fit the observed R(e) 

values by a non-linear least-squares method. In this fit, 
values may be obtained for the extinction-free flipping 
ratio R together with the parameters G and fl, 
representing the amount of extinction and the non- 
polarized background respectively. 

The results of this fitting are given in Table 1. 

7. Results of the extrapolation procedure and 
discussion 

Table 1 shows that values for R obtained from the 
extrapolation procedure for different equivalent reflec- 
tions are equal within experimental error, whereas the 
peak values R(0) are different; the applied correction 
could also be different in this case. Typical examples of 
the extrapolation procedure are given in Figs. 7-10. In 

Table 1. Listing o f  experimental data and data obtained by processing with the extrapolation procedure described 
in the text of  two samples o f  the alloy Nio.9saVo.o~ 7 

Reflections marked by an asterisk are visualized in Figs. 7-10. 

Effective 
Sample path R --  Rn(O ) 

hk l  no. a (o) tt' (o) l (ram) R (0) R R 

l i l *  3 51 --20 0.189 1-4778 (11) 1.4793 (13) 0.0006 (13) 
111 2A 15 15 0"104 1"4810(11) 1.4833 (11) 0"0013 (12) 
I i i* 2A 15 15 0" 104 1.4806 (7) 1.4822 (8) 0"0009 (9) 
111 2A 39 --70 0.211 1"4749 (11) 1.4819 (10) 0.0046 (11) 
l l i  2A 70 --39 0.211 1"4734 (12) 1.4828 (11) 0.0058 (12) 
200* 3 18 18 0" 150 1-4217 (10) 1-4274 (13) 0.0038 (17) 
020 3 18 18 0-150 1.4212 (14) 1.4229 (17) 0-0011 (17) 
002 2A 27 -63  0.166 1.4167 (13) 1.4200 (15) 0.0021 (16) 
020 2A 63 -27  0"166 1.4145 (12) 1.4231 (14) 0"0057 (15) 
200* 2A 18 18 0" 105 1.4200 (9) 1.4240 (10) 0.0027 (I 1) 
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these figures, those reflections are presented that are 
marked with asterisks in Table 1. 

Table 1 also shows that even for geometrically 
equivalent pairs of reflections, having the same path 
length l, such as 111 and 111, 111 and 111, 002 
and 020 for sample 2A, or 200 and 020 for sample 3, 
the applied correction [R -- Rn(O)]/R is different. 
This means that any (known) procedure for extinction 
correction would have to fail if one attempted to use 
the procedure to. correct peak-value data without a 
knowledge of the rocking curve behaviour. 

The discrepancies in the experimental data for the 
peak values R(0) cited in Table 1 are most probably 
caused by simultaneous reflection effects. Neverthe- 
less, R values obtained from the extrapolation pro- 
cedure are much less sensitive to this effect than the 
peak values. This may be understood in the following 
way; R as resulting from the fitting procedure is 
influenced (with varying statistical weighting factor) by 
all points on the rocking curve. If only some of these 
points are affected by simultaneous reflection effects, R 
will generally be less affected than those individual 
points. However, it must be admitted that further 
analysis should be performed in order to determine the 
size of the simultaneous reflection effect on R, deter- 
mined in this way. In this paper we will not be 
concerned further with this phenomenon as correction 
for extinction is our main aim. 

As the phenomena, described in this report, are very 
likely also to be present in other materials than those 
used in the present work, it is advisable to explore the 
situation in materials to be investigated before starting 
a more or less automatic data collecting program 
and using a set of R values as input for some data 
processing procedure that might be based on 
assumptions and conditions that are not valid for the 
specimen. In this case, the extrapolation procedure 
described above may provide a means of obtaining 
more reliable R values. It is a serious disadvantage that 
the method is rather time consuming in the data 
collection stage. 

The authors thank Miss J. Kwiatkowska of IFJ for 
her help with the preparation of the samples, and F. W. 
Hamburg and A. Mastenbroek of ECN for the deter- 
mination of the thickness of the 0.005 mm crystal. 

A P P E N D I X  

In this Appendix, a more formal derivation will be given 
of the function ~. An expression for the general case 
will be given and the approximations discussed. For 
two special cases, symmetrical reflection and symmetri- 
cal transmission of an infinite plane parallel crystal 
plate, exact expressions for ~ will be given. 

General case 

For crystals with a mosaic microstructure the power 
of the diffracted beam I~(8) is given (Zachariasen, 
1967) by: 

I~(t) = ~'0 ve+(8) ~P[e+ (t) ]. (A 1) 

The meaning of the symbols is the same as in Becker & 
Coppens (1974). 

Inserting (A 1) into the definition of the observable 
flipping ratio given by (2a) we obtain: 

~p[a+(8)] 
Rs( t  ) = R ¢p[a-(8)] ' (A2) 

R =o+(8)1o-(8) .  (A3) 

R is the secondary-extinction-free value for the flipping 
ratio which is angle independent for negligible primary 
extinction (see later in this Appendix). 

Equations (A1), (A2), and (A3)determine the 
analytical form of the function ~ defined by (7), 

Rn(t  ) = R ~[I+(8)1. (A4) 

It can be seen that the analytical form of the function 
depends mainly on the form of the extinction 

function ¢p. 
Becker & Coppens (1974) proved that in the general 

ease this function can be approximated by a series 
expansion 

oo 

~P(G+) : Z (--1)n(G+) n'~-'ff/nt 
n = 0  

oo  

= 1 -- Z (--1) n-1 (G+) n T-7/n!, (A5) 
n = l  

with n(;)2 
if e -+ ~r ,~ 1 we may approximate the extinction 

function by 

¢pta-+(8)] = 1 -- a+(t) L (A7) 

and function ~ b y  

1 - G+(e)  T 
7J[I+(8)1 = ~ 1 -- [0+(8)-  a-(8)] T. (A8) 

1 - a- (e)  fr 

Retaining only linear terms in (A 1) we obtain 

;r  
[a+(8) - a - (g ) ]  ~ r=  ~ [in+(8) _ Ib-(8)] (A9)  

J"0 v 

and we may write for Rn(8) 

Rs(8) = R[1 -- GAI(8)], (A 10) 
where 

G =  I"/~'o v, (Al l )  

AI(8) = I+B (~) - I~(8). (A12) 
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Expression (A 10) is similar to the one postulated in 
(8). Parameter G is now defined in (A 11). 

The above derivation is valid under the following 
assumptions: 

(1) the microstructure of the crystal is homo- 
geneous and well approximated by the mosaic model, 

(2) the divergence of the incoming beam is small 
relative to the width of the mosaic of the crystal, 

(3) the condition (e + - e-)  ~r,~ 1 is fulfilled, 
(4) parameter R is angle independent, which means 

that primary extinction has to be negligible. This 
condition can be understood from the argument that 
the angular dependence of the neutron cross-section for 
perfectly ordered grains and the angular dependence 
arising from the crystal mosaic are different. 

Symmetrical Bragg case 

For the case of scattering by an infinite plane parallel 
crystal plate in the symmetrical reflection position, 
there is an exact solution for the extinction function ~0 
(Zachariasen, 1967): 

(o[e-+(e)] = 1/[1 + tr-+(e) ~rl. (A 13) 

By combination of this expression with (A1) one 
obtains 

¢[a-+(e)] = 1 -- GI~(t), (A 14) 

where G has the same meaning as in (A 11). Substitut- 
ing this in (A 2) one arrives at 

Rn(e)=R[1 --GI+(e)]/[1-Gig(e)].  (A15) 

This expression can be converted into: 

R -- Rs(O) I+(s) / 
Rn(e )=  R 1-- . (A16) 

R I+(0)J 

In this way the problem of deducing an expression 
for W has been solved in an exact way independently of 
crystal thickness and the amount of secondary 
extinction. 

~ o [ a - ( e ) ]  = 
1 -- [1 -- 2GI+(e)] vR 

(l /R) In[1 -- 2GI+(e)] 
(A18b) 

and with (A 2) 

2GI+(e) 
Rs(e)= (X19) 

1 -- [1 -- 2GI+(e)] vR 

Expression (A19) represents the solution to the 
problem of finding an exact solution for ~ in the 
symmetrical Laue case. 

Remark 

As already stated in the introduction of this paper, 
the amount of secondary extinction varies when a 
crystal is rotated through the Bragg peak. The use of 
polarized neutrons offers a unique possibility to detect 
this variation as a change in the observed flipping ratio 
Rn(e), a possibility that is not present when unpolarized 
neutrons are being used. 

In order to investigate whether, for a given crystal, 
the Zachariasen model for secondary extinction is 
valid, the scattering power of the crystal has to be 
varied, which normally is done either by varying the 
wavelength or by using samples of different thickness. 

The use of polarized neutrons, combined with 
measuring the R-on-rocking-curve offers a third possi- 
bility. For the employment of this possibility, an 
analytical formulation of the observable flipping ratio 
Rn(e) in terms of the extinction-free flipping ratio R, 
and the observed intensity I+(e) is given in this 
Appendix. In the general case it is only possible to give 
a practical formulation (AI0) for sufficiently thin 
crystals. For the symmetrical Laue and Bragg cases it 
turns out to be possible to deduce more general 
formulations, (A 16) and (A 19), that are also valid for 
thicker crystals. 

Symmetrical Laue case 

Also for the case of scattering by an infinite plane 
parallel crystal plate in symmetrical transmission an 
exact solution for ~ has been given (Zachariasen, 1976): 

1 - exp [-2e-+(t) I"] 
tP[o+(e)l = . (A17) 

2e-+(e) ~r 

Combination of (A17)with (A1), (A3), and (Al l )  
leads to: 

2GI+(t) 
(0[o+(e)] = (A 18a) 

ln[1 - 2GI+(t)] ' 
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